Application of dense and convolutional neural networks for COVID_19 detection in Xray images

Authors

  • Ronny Stalin Guevara Cruz Instituto de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Tecnológicas https://orcid.org/0000-0002-1536-5948
  • Claudio Augusto Delrieux Instituto de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Tecnológicas https://orcid.org/0000-0002-2727-8374

DOI:

https://doi.org/10.37431/conectividad.v4i2.78

Keywords:

COVID-19; pneumonia; machine learning; artificial intelligence; convolutional neural networks

Abstract

Convolutional neural networks (CNNs) have great potential in solving classification problems with images. The present research aims to present reduced models that allow identifying cases of pneumonia and COVID-19 in chest X-ray images (anterior-posterior), offering a broad perspective of the interest of tools that provide medical support and assistance. The capacity and size of the models were reduced until obtaining a perfect option to be deployed locally in devices with limited resources. The proposed algorithms were developed in Google Colab using the Python programming language, applying dense and convolutional neural networks to different layers until obtaining a low error rate, to later diagnose if the patient has COVID-19. To do this, a set of 603 high-resolution images from public databases (see in https://www.cell.com/cell/fulltext/S0092- 8674(18)30154-5 and https://github.com/ieee8023/covid-chestxray-dataset) is used, divided into 403 images for training, 200 images for testing and 12 images for validation. The tool designed with a convolutional neural network of 13 layers proposes the integration of machine learning (Machine Learning) as a support in the medical diagnosis process, with an accuracy of 94.73% can become a tool that provides greater speed when giving a diagnosis.

References

Belman Lopez, C. E. (2022). Detection of COVID-19 and Other Pneumonia Cases using Convolutional Neural Networks and X-ray Images (Vol. 42). Colombia: Ingeniería e Investigación. https://doi.org/10.15446/ing.investig.v42n1.90289

Bueno, F. (2019). Redes Neuronales: Entrenamiento y Comportamiento. Madrid: Universidad Complutense Madrid.

Cabanilla del Estal, T., & Martín Martín, Q. (2021). Aplicación de las redes neuronales artificiales al COVID-19. España: Universidad de Salamanca.

Catalán, E., De la Cruz Gámez, E., Montero Valverde, J., & Hernández, R. (s.f.). Detección automática de retinopatía diabética aplicando visión artificial y redes neuronales convolucionales.

Combalia, M., & Vilaplana, V. (2019). Clasificación de imágenes dermatoscópicas utilizando Redes Neuronales Convolucionales e información de metadatos. Barcelona: Universidad Politécnica de Catalunya.

Gómez Macedo, M. (2022). Detección de covid-19 y neumonía en imágenes rayos x de pulmones utilizando redes neuronales convolucionales. México: Universidad Nacional Autónoma de México.

Lopez Betancur, D., Bosco Duran, R., Guerrero Mendez, C., Zambrano Rodríguez, R., & Saucedo Anaya, T. (2021). Comparación de arquitecturas de redes neuronales convolucionales para el diagnóstico de COVID-19. En Computacion y Sistemas (Vol. 25, págs. 601-615). Mexico: Instituto Politécnico Nacional/Centro de Investigacion en Computación. https://doi.org/10.13053/cys-25-3-3453

Losada Gutiérrez, C., & Fuentes Jiménez, D. (2019). Detección de personas en imágenes de profundidad mediante redes neuronales convolucionales. Madrid: Universidad de Alcalá.

OMS. (2020). Coronavirus disease 2019 (COVID-19). Situation Report - 39. Geneva: World Health Organization. Recuperado el 30 de Agosto de 2022, de https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200228-sitrep- 39-covid-19.pdf?sfvrsn=5bbf3e7d_2

OMS. (2023). Coronavirus disease (COVID-19) pandemic. Recuperado el 2022 de Septiembre de 02, de https://www.who.int/emergencies/diseases/novel-coronavirus-2019

Pérez Abreu, M. R., Gómez Tejeda, J. J., & Dieguez Gauch, R. A. (2022). Características clínico- epidemiológicas de la COVID-19 (Vol. 19). La Habana: Revista Habanera de Ciencias Médicas. Obtenido de http://www.revhabanera.sld.cu/index.php/rhab/article/view/3254/2505

Quiñones Huatangari, L., Ochoa Toledo, L., & Gamarra Torres, O. (2020). Red neuronal artificial para estimar un índice de calidad de agua. Quito: Enfoque. https://doi.org/10.29019/enfoque.v11n2.633

Serrano Muñoz, A., Viera López, G., & Betancourt Hernández, M. (2018). Diagnostico automático de artritis reumatoide en radiografías de manos utilizando redes neuronales convolucionales. (Vol. 35). Cuba: Revista Cubana de Física.

Ye, Z., Zhang, Y., Wang, Y., Huang, Z., & Song, B. (2020). Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. En European Radiology (Vol. 30, págs. 4381-4389). https://doi.org/10.1007/s00330-020-06801-0

Published

2023-07-10

How to Cite

Guevara Cruz, R. S., & Augusto Delrieux, C. (2023). Application of dense and convolutional neural networks for COVID_19 detection in Xray images. CONECTIVIDAD, 4(2), 19–32. https://doi.org/10.37431/conectividad.v4i2.78

Issue

Section

Research Articles