Solar Radiation Forecasting in Photovoltaic Systems Utilizing Machine Learning Techniques

Authors

DOI:

https://doi.org/10.37431/conectividad.v6i1.196

Keywords:

Renewable energy, Photovoltaic systems, Prediction, Decision tree

Abstract

This research responds to the growing demand for renewable energy, focusing specifically on photovoltaic systems that harness solar energy as a viable and sustainable solution. The methodology implemented included the analysis of hourly solar radiation data collected during the period 2017-2023. These data were fundamental to make predictions and validate the algorithm used. The purpose of these predictions was to optimize the sizing of a photovoltaic system appropriate for an urban area. For this purpose, a decision tree algorithm was employed within the machine learning technique, using Python software due to its accessibility. The results were stored in an .xlsx file, which simplified the system sizing process. In addition, standard deviation calculations were incorporated to estimate the solar radiation over the next three months, thus allowing an accurate and adequate calculation of the required PV system. In conclusion, the designed PV system was efficiently sized based on the predictive analysis provided by the algorithm. With a peak power of 1.26 kWp and a well-adapted storage configuration, this system is equipped to meet the daily energy demands of 123.5 kWh.

References

Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. Recuperado de https://scholarworks.utep.edu/cs_techrep/1209

Herrera Jiménez, A. (2023). Análisis y predicción de radiación en sistemas fotovoltaicos haciendo uso de Aprendizaje Automático .

Lorenzo J. A. (2024), "Radiación, Irradiación y Azimut en Fotovoltaica. SunFields." [Online]. Available: https://www.sfe-solar.com/noticias/articulos/energia-fotovoltaica-radiacion-geometria-recorrido-optico-irradiancia-y-hsp/#Irradiancia

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An introduction to statistical learning with applications in R. Springer Science+Business Media.

Ministerio de Energía y Recursos Naturales No Renovables. (2018). Plan Maestro de Electricidad (pp. 54-55). Recuperado el 8 de julio de 2024, de https://www.celec.gob.ec/wp-content/uploads/2023/02/Plan-Maestro-de-Electricidad.pdf

NASA. (2024). NASA POWER | Predicción de los recursos energéticos mundiales. Recuperado el 17 de julio de 2024, de https://power.larc.nasa.gov/

Ordoñez-Palacios, L.-E., et al. (2020). Predicción de radiación solar en sistemas fotovoltaicos utilizando técnicas de aprendizaje automático. Revista Facultad de Ingeniería, 29(54), e11751. https://doi.org/10.19053/01211129.V29.N54.2020.11751

Solargis. (2024). Previsiones solares y predicción solar - Visión general. Recuperado el 8 de agosto de 2024, de https://solargis.com/es/products/forecast

Wang, F., Mi, Z., Su, S., & Zhao, H. (2012). Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies (Basel), 5(5), 1355-1370. https://doi.org/10.3390/EN5051355.

United Nations. (2024). La promesa de la energía solar: Estrategia energética para reducir las emisiones de carbono en el siglo XXI. Naciones Unidas. Recuperado el 8 de agosto de 2024, de https://www.un.org/es/chronicle/article/la-promesa-de-la-energia-solar-estrategia-energetica-para-reducir-las-emisiones-de-carbono-en-el

Published

2025-01-23

How to Cite

Palomo, W., Quinatoa, C., Mullo, M., & Castillo, J. (2025). Solar Radiation Forecasting in Photovoltaic Systems Utilizing Machine Learning Techniques. CONECTIVIDAD, 6(1), 338–355. https://doi.org/10.37431/conectividad.v6i1.196

Most read articles by the same author(s)