Application of a mathematical model for the analysis of the behavior of the otto MCI cycle under manipulation of environmental parameters
DOI:
https://doi.org/10.37431/conectividad.v5i1.111Keywords:
Articles, Cycles, Research, Engines, Temperature, PressureAbstract
The objective of bibliographic and experimental research on the behavior of the thermodynamic cycle in internal combustion engines is to verify changes in behavior, using mathematical solutions to analyze changes in values in terms of pressure, volume and rotation of the crankshaft. The power output of a four-stroke gasoline engine with compression in the engine is proportional to an exponent of 1.34 of the polytropic coefficient and the compression ratio. The effects of pressure and temperature variations on the performance of internal combustion engines that operate at different heights above sea level, which is why it was studied taking advantage of the fact that our country Ecuador has many geographical changes, since quantifying the effects of temperature and pressure is vital to establishing the ability to operate spark ignition engines at altitudes much higher than those for which they were designed. The effects of atmospheric conditions showed that temperature dominates pressure and resulted in a power loss and compression drop of around 1.5% for every 100 m increase in altitude. Engine efficiency dropped approximately 1.54 percentage points for every 300 m increase in altitude. The research was captured in Excel for the development of the mathematical model, in which the pressure vs volume diagram graphs, pressure vs angle of rotation of the crankshaft and the dispersion of forces acting on the piston, connecting rod and crankshaft were obtained.
References
Abdullah, N. R., Shahruddin, N. S., Mamat, A. M. I., Kasolang, S., Zulkifli, A., & Mamat, R. (2013). Effects of Air Intake Pressure to the Fuel Economy and Exhaust Emissions on a Small SI Engine. Procedia Engineering, 68, 278-284.
https://doi.org/10.1016/j.proeng.2013.12.180
Ağbulut, Ü., & Bakir, H. (2019). The investigation on economic and ecological impacts of tendency to electric vehicles instead of internal combustion engines. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 25-36. https://doi.org/10.29130/dubited.457914
Andara, R. (2019). Usabilidad, impactos ambientales y costos de los vehículos de combustión interna y eléctricos. https://doi.org/10.24197/trim.17.2019.111-125
Caballero Carrascal, J., Fernández Diego, M., & Cutanda García, E. M. (2006). MAGRIP, Modelo de Gestión de Riesgos En Proyectos: Su Aplicación A Proyectos De Riesgos Laborales.
Dicksee, C. B. (1959). Influence of Atmospheric Pressure and Temperature upon the Performance of the Naturally Aspirated Four-Stroke C. I. Engine. Proceedings of the Institution of Mechanical Engineers: Automobile Division, 13(1), 83-99. https://doi.org/10.1243/PIME_AUTO_1959_000_014_02
Doorman, F. J. (1991). La metodología del diagnóstico en el enfoque" Investigación Adaptativa": IICA Biblioteca Venezuela.
Fernández, C., & Baptista, P. (2013). Metodología de la Investigación-Roberto Hernández Sampieri. Journal of Chemical Information and Modeling, 53(9).
Fernández, M. T., & García, B. M. (2017). La Educación inclusiva intercultural en Latinoamericana. Análisis legislativo. Revista de Educación Inclusiva, 9(2-bis).
Guzzella, L., & Onder, C. (2009). Introduction to modeling and control of internal combustion engine systems: Springer Science & Business Media. https://doi.org/10.1007/978-3-642-10775-7
Hernández-Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2018). Metodología de la investigación (Vol. 4): McGraw-Hill Interamericana México. https://doi.org/10.17993/CcyLl.2018.15
Heywood, J. B. (2018). Internal Combustion Engine Fundamentals (2nd edition. ed.). New York: McGraw-Hill Education.
Jhon, A. A. G. (2023). Incidencia de los efectos ambientales en el comportamiento de la eficiencia mecánica en los motores de combustión interna aplicando un modelo matemático. In.
Lapuerta, M., Armas, O., Agudelo, J. R., & Sánchez, C. A. (2006). Estudio del efecto de la altitud sobre el comportamiento de motores de combustión interna. Parte 1: https://doi.org/10.4067/S0718-07642006000500005
Funcionamiento. Información tecnológica, 17(5), 21-30. https://doi.org/10.4067/S0718-07642006000500005
Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. https://doi.org/10.1016/j.treng.2020.100005
Mena, L. (2011). Compilador de ejercicios de motores de combustión interna Diesel-Gasolina.Nueva Aurora.(págs. 48). Ecuador, Quito.
Reitz, R. D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., . . . Zhao, H. (2019). IJER editorial: The future of the internal combustion engine. International Journal of Engine Research, 21(1), 3-10. https://doi.org/10.1177/1468087419877990
Rodríguez, C. M., & Valldeoriola, J. (2002). Metodología de la investigación: Panamericana. Stone, R. (1999). Introduction to internal combustion engines (Vol. 3): Springer.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Instituto Superior Tecnológico Universitario Rumiñahui

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The originals published in the electronic edition under the first publication rights of the journal belong to the Instituto Superior Tecnológico Universitario Rumiñahui; therefore, it is necessary to cite the source in any partial or total reproduction. All the contents of the electronic journal are distributed under a Creative Commons Attribution-Noncommercial 4.0 International (CC-BY-NC 4.0) license.