Fuel injection systems for light vehicles (SI) in the Ecuadorian market. Study case: Japanese brands

Authors

DOI:

https://doi.org/10.37431/conectividad.v5i1.108

Keywords:

Indirect injection (PFI), Direct injection (GDI), Skyactiv, Ecuador

Abstract

Internal combustion engines are a major source of environmental pollution and depletion of fossil resources. To address these problems, different technologies such as gasoline direct injection (GDI) have been developed, which reduce emissions and improve engine efficiency. This work is oriented towards the analysis of the types of fuel injection systems incorporated in the spark ignition engines in Japanese brand vehicles that are offered in the Ecuadorian market during the year 2023 and the fuel quality requirements. The technological method was used considering the practical approach, with two stages: bibliographic collection and data collection and processing. There are 5 Japanese brands in Ecuador, corresponding to the third  place in vehicles according to country of origin, with a total offer of 31 models, also constituting 25% of vehicles in Ecuador's automotive fleet. The Mazda brand includes direct injection systems in all its models, at the same time requiring Super premium fuel for operation, in the remaining brands they combine direct and indirect injection systems in the models for sale. This segment of brands offers 50% of models with direct injection, this technology being growing in vehicles of Japanese origin in the Ecuadorian market.

References

AEADE. (2023). Anuario 2022. Quito: AEADE.

Alvarez, J., & Callejón, I. (2022). Máquina térmicos motores. Barcelona: Ediciones UPC.

Antamba, J. (2018). Diagnóstico de la condición operativa del motor por encendido provocado (MEP), según el tipo de gasolina empleado en las ciudades de Quito y Esmeraldas. Quito: EPN.

Bosch. (2016). Manual de la técnica del automóvil. España: Reverte. CINAE. (2023). Boletín Parque Automtor 2023. Quito: CINAE.

Gong, C., Si, X., & Liu, F. (2021). Combined effects of excess air ratio and EGR rate on combustion and emissions behaviors of a GDI engine with CO2 as simulated EGR (CO2) at low load. Fuel, 45-65. https://doi.org/10.1016/j.fuel.2021.120442

Gong, H., Huang, W., Gao, Y., Wang, J., Arioka, A., & Sasaki, Y. (2022). End-of-injection fuel dribbling dynamics of multi-hole GDI injector. Fuel, 406-416. https://doi.org/10.1016/j.fuel.2022.123406

Grupo MORISAENZ. (2023). Mitsubishi Motors Corporation. Recuperado el 01 de 02 de 2023, de https://www.mitsubishi-motors.com.ec/

He, Z., Zhang, Y., Yu, L., Liu, G., Zhou, D., Qian, Y., & Lu, X. (2022). Impacts of gasoline fuel components on GDI engine performances: Part 1, influence on gaseous toxic pollutants. Fuel, 423-433. https://doi.org/10.1016/j.fuel.2021.122423

MAZDA. (2023). MAZDA. Recuperado el 02 de 01 de 2023, de https://www.mazda.com.ec/

Mi, S., Zhang, Y., Wu, H., Zhao, W., Lu, X., & Qian, Y. (2022). Effects of research octane number of gasoline and dual direct injection strategies on combustion and emission performance of intelligent charge compression ignition (ICCI) mode. . Fuel Processing Technology, 508- 519. https://doi.org/10.1016/j.fuproc.2022.107508

Mora, C., & Altamirano, D. (2022). Características de los sistemas de inyección. Una revisión bibliográfica. Polo del Conocimiento, 7(4), 390-403. Obtenido de https://polodelconocimiento.com/ojs/index.php/es/article/view/3831/8868

NISSAN. (2023). NISSAN. Recuperado el 01 de 02 de 2022, de https://www.nissan.com.ec/vehiculos/nuevos-vehiculos.html

Payri, R.; Bracho, G.; Gimeno, J.; Bautista, A. (2018). Rate of injection modelling for gasoline direct injectors. Energy Conversion and Management, 166, 424-432. https://doi.org/10.1016/j.enconman.2018.04.041

Suzuki. (2023). Suzuki Ecuador. Recuperado el 02 de 03 de 2023, de https://www.suzukiecuador.com/

TOYOTA. (2023). TOYOTA. Recuperado el 01 de 03 de 2023, de https://www.toyota.com.ec/

Tulcanaz, K., Rodríguez, J., & Álvarez, E. (2022). Análisis de los sistemas modernos de inyección a gasolina. Polo del conocimiento, 7(10), 123-137. doi:http://dx.doi.org/10.23857/pc.v7i10.4717

Vasconez, P. (2020). Diagnóstico del Sistema de Inyección a Gasolina [ Tesis - Pregrado]. Quito: Repositorio USFQ. Obtenido de https://repositorio.usfq.edu.ec/bitstream/23000/10028/1/107940.pdf

Yu, F., Zhong, Z., Wang, Q., Liao, S., Zhu, M., Liu, J., & Zheng, J. (2022). Characterizing the particle number emissions of light-duty gasoline vehicles under different engine technologies and driving conditions. Environmental Research, 213, 113648., 648-658. https://doi.org/10.1016/j.envres.2022.113648

Zhang, Y., Zhang, J., & Zhang, L. (2022). A review of automotive electronic systems. . IEEE Transactions on Industrial Informatics, 1015-1027.

Published

2024-01-15

How to Cite

Antamba, J., Oña, G., Vallejo, V., & Peñafiel, D. (2024). Fuel injection systems for light vehicles (SI) in the Ecuadorian market. Study case: Japanese brands. CONECTIVIDAD, 5(1), 67–82. https://doi.org/10.37431/conectividad.v5i1.108

Issue

Section

Research Articles