Optimización de microrredes con generación distribuida utilizando GWO (Grey Wolf Optimizer) para mejorar la estabilidad de voltaje del sistema de prueba IEEE de 34 nodos

Authors

DOI:

https://doi.org/10.37431/conectividad.v6i3.343

Keywords:

Voltage stability, Distributed generation, Optimization, Renewable energies, Distribution networks

Abstract

This study proposed the application of the Gray Wolf Optimizer (GWO) optimization algorithm to improve voltage stability and reduce power losses in distributed generation systems with integration of renewable energy sources. The 34-node IEEE test system was used as a case study, where a methodology was developed that combined the OpenDSS software for modeling and simulation of the distribution network, and MATLAB for the implementation of the GWO algorithm and the visualization of results. The optimization focused on determining the optimal location and capacity of the distributed generators, as well as the configuration of the regulator transformer taps located in the different nodes. The results demonstrated that the application of GWO manages to significantly improve the voltage profiles, bringing them within acceptable operating limits, and reducing power losses in the system. Furthermore, the integration of optimized distributed generation contributes to the decentralization and resilience of the electricity system. This methodology provided a valuable tool for decision-making in the planning and operation of distribution networks with high penetration of renewable energy, promoting more efficient, reliable and sustainable operation.

References

Abdelaziz, A. Y., Ali, E. S., & Abd-Elazim, S. M. (2020). A new harmony search algorithm for optimal location and sizing of renewable DG units in distribution systems. International Journal of Electrical Power & Energy Systems, 80, 136-144. https://doi.org/10.1016/j.ijepes.2016.01.014

Ahmadi, A., Sadeghzadeh, S. M., & Esmaeilian, A. (2021). Realistic modeling of distributed generation in distribution networks considering uncertainty. Electric Power Systems Research, 194, 107070. https://doi.org/10.1016/j.epsr.2021.107070

Azizivahed, A., Zabihi, M. S., Ghasemi, M., & Gandomkar, M. (2020). Optimal power flow using a modified grey wolf optimizer. Applied Soft Computing, 86, 105910. https://doi.org/10.1016/j.asoc.2019.105910

Dada, E. G., Misra, S., & Maskeliūnas, R. (2022). Grey Wolf Optimizer: A comprehensive review of recent variants and applications. Applied Soft Computing, 114, 108150. https://doi.org/10.1016/j.asoc.2021.108150

Gangwar, R., Singh, P. K., & Verma, H. K. (2022). Modeling and simulation of distributed energy resources using OpenDSS and MATLAB. Sustainable Energy, Grids and Networks, 31, 100782. https://doi.org/10.1016/j.segan.2022.100782

Hasan, K. N., Mohd Nor, M. J., & Ali, A. B. M. (2021). Voltage regulation in a hybrid microgrid using GWO under real-time conditions. IEEE Transactions on Smart Grid, 12(4), 3192-3203. https://doi.org/10.1109/TSG.2021.3051234

Hu, Z., Liu, Q., Wang, Y., & He, J. (2019). Voltage stability assessment of power systems with high penetration of renewable energy. Electric Power Systems Research, 170, 108-118. https://doi.org/10.1016/j.epsr.2019.01.002

Karunathilake, H., Bhattarai, B. P., & Karki, R. (2019). Linear and nonlinear programming approaches for optimal operation of microgrids. Renewable and Sustainable Energy Reviews, 101, 41-60. https://doi.org/10.1016/j.rser.2018.11.005

Meegahapola, L. G., Perera, S., & Flynn, D. (2020). Voltage stability improvement strategies in renewable-rich distribution systems. IEEE Transactions on Power Systems, 35(2), 1461-1472. https://doi.org/10.1109/TPWRS.2019.2948874

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007

Naji, H., Fattahi, S. M. M., & Rezaei, N. (2022). Real-time coordination of voltage regulators in distribution systems using GWO with hardware-in-the-loop. Electric Power Components and Systems, 50(2), 123-137. https://doi.org/10.1080/15325008.2021.1981461

Owuor, J., Nagi, J., & Nadarajah, M. (2011). IEEE 34 Node Test Feeder: Simulation and modeling. IEEE PES General Meeting, 1-7. https://doi.org/10.1109/PES.2011.6039320

Ozsoydan, F. B. (2019). A hybrid GWO-PSO algorithm for solving optimal reactive power dispatch problem. Sustainable Computing: Informatics and Systems, 21, 195-206. https://doi.org/10.1016/j.suscom.2018.10.004

Parizad, A., Khazali, A. H., & Kalantar, M. (2021). Optimal placement of distributed generation using GWO in SCADA-enabled smart grids. Renewable Energy, 164, 871-885. https://doi.org/10.1016/j.renene.2020.09.069

Pham, H. V., Nguyen, D. Q., & Tran, Q. T. (2022). Geospatial distribution and temporal modeling of renewable energy in distribution systems. Energy Reports, 8, 2927-2938. https://doi.org/10.1016/j.egyr.2022.01.017

Rabiee, A., Hemmati, R., & Mohammadi-Ivatloo, B. (2020). Handling uncertainty in renewable energy-based microgrids using stochastic programming. Renewable and Sustainable Energy Reviews, 120, 109658. https://doi.org/10.1016/j.rser.2019.109658

Razavi, F., Naderi, M. S., & Niknam, T. (2019). Benefits of distributed generation on transmission and distribution systems. Renewable and Sustainable Energy Reviews, 107, 144-157. https://doi.org/10.1016/j.rser.2019.02.008

Sun, H., Liu, J., & Zhang, B. (2019). Analysis and prediction of power fluctuation in solar energy generation systems. Renewable Energy, 135, 872-882. https://doi.org/10.1016/j.renene.2018.12.074

Published

2025-07-18

How to Cite

Pastuña Umajinga, J. D., Corrales Bonilla, J. I., & Hidalgo Osorio, W. A. (2025). Optimización de microrredes con generación distribuida utilizando GWO (Grey Wolf Optimizer) para mejorar la estabilidad de voltaje del sistema de prueba IEEE de 34 nodos. CONECTIVIDAD, 6(3), 396–414. https://doi.org/10.37431/conectividad.v6i3.343