Experimental Environments for the Teaching of Basic Concepts of Industrial Automation

Authors

DOI:

https://doi.org/10.37431/conectividad.v6i2.276

Keywords:

Entornos experimentales, modelado de procesos industriales, laboratorios remotos, laboratorio para llevar a casa

Abstract

This paper addresses the implementation and use of a remote experimental environment in industrial automation education, highlighting the importance of combining theory with applied practices. During the COVID-19 pandemic, the need to access laboratories remotely was highlighted, which has led to the creation of virtual laboratories to allow students to perform practices from their homes. And currently, although laboratories are accessed in person, remote access gives flexibility to students to perform practices independently avoiding crowds due to the number of modules in the laboratory or the opening hours. A case study is presented in which a SCADA system is programmed to control the temperature of a tank. In this study a PID controller is implemented, achieving an error of 2.4%. The effects of the use of remote laboratories are analyzed in a universe of 162 students. In face-to-face mode, 62 students would have difficulties to access the modules. However, currently, 100% of the students have access to the practices thanks to the implementation of these laboratories. The versatility of the implemented modules is highlighted and the importance of adapting to technologies such as IoT to facilitate access to the laboratories from any location is emphasized, thus promoting more effective and safe learning in the field of industrial automation.

References

J. Vargas, J. Cuero, and C. Torres, “Laboratorios Remotos e IOT una oportunidad para la formación en ciencias e ingeniería en tiempos del COVID- 19 : Caso de Estudio en Ingenie-ría de Control,” Rev. Espac., vol. 41, no. 42, pp. 188–198, 2020, doi: 10.48082/espacios-a20v41n42p16.

D. Herrero-Villareal, C. Arguedas-Matarrita, and E. Gutiérrez-Soto, “Laboratorios remotos : recursos educativos para la experimentación a distancia en tiempos de pandemia desde la percepción de estudiantes Remote laboratories : Educational resources for,” Rev. Enseñanza la Física, vol. 32, pp. 181–189, 2020.

J. López-Solorzano and C. Ángel-Rueda, “Revisión sistemática de los entornos digitales in-mersivos tridimensionales en la enseñanza de la programación,” Rev. Educ. a Distancia, vol. 23, no. 73, 2023, doi: http://dx.doi.org/10.6018/red.540731.

M. Arroba Arroba and S. Acurio Maldonado, “Laboratorios virtuales en entorno de aprendi-zaje de química orgánica , para el bachillerato ecuatoriano,” Rev. Científica, vol. 8, no. 3, pp. 73–93, 2021, doi: https://doi.org/10.35290/rcui.v8n3.2021.456.

L. Cerdá-Sánchez and C. Cristófol-Rodriguez, “An exploratory study on the impact of neu-romarketing on virtual learning environments,” Vivat Acad., vol. 115, pp. 1–16, 2022, doi: http://doi.org/10.15178/va.2022.155.e1391.

D. Muñoz, M. Domínguez, F. Gomez-Estern, Ó. Reinoso, F. Torres, and S. Dormido, “Es-tado del arte de la educación en automática,” Rev. Iberoamerica Automática e Informática, vol. 19, pp. 117–131, 2022.

G. Ampuño, W. Agila, and H. Cevallos, “Implementación y analisis de rendimiento de un control industrial de nivel para tanques con fluidos, basado en lógica difusa.,” MASKANA, I+D+ingeniería, vol. 5, pp. 27–36, 2015.

Á. Tumbaco, R. Viña, and G. Ampuño, “Segundo Congreso Salesiano de Ciencia, Tecnolo-gía e Innovación para la Sociedad,” in Segundo congreso salesiano de ciencia, tecnología e innovación para la sociedad, Editorial Universitaria Abya-Yala, Ed. Guayaquil, 2016, pp. 177–183.

A. Hoyo, F. García-Mañas, J. Ramos-Teodoro, J. A. Sánchez-Molina, J. L. Guzmán, and F. Rodriguez, “Uso del paradigma Take-Home Labs para la enseñanza del control automático en estudios de ingeniería,” XLII Jornadas Automática, vol. 42, pp. 218–225, 2021, doi: https://doi.org/10.17979/spudc.9788497498043.218 225.

M. Domínguez González et al., “Demostradores para la formación en digitalización de la in-dustria,” Premios a la innovación en la enseñanza, León - Mexico, pp. 65–116, 2022.

Published

2025-05-16

How to Cite

Ampuño Avilés, G. O. (2025). Experimental Environments for the Teaching of Basic Concepts of Industrial Automation. CONECTIVIDAD, 6(2), 366–373. https://doi.org/10.37431/conectividad.v6i2.276