Occupational safety in alternative fuel production by pyrolysis of recycled tires: innovative techniques

Authors

DOI:

https://doi.org/10.37431/conectividad.v5i3.141

Keywords:

Waste management, Occupational safety, Pyrolisis, Alternative fuels, Sustainability

Abstract

Pyrolysis of used tires has emerged as a promising option in the face of the growing need to find sustainable solutions for waste management. The main objective of this study is to analyze the occupational safety of alternative fuel production by pirolysis of used tires in a pilot plant in the parish of Sangolquí - Ecuador. The methodology included literature review, risk analysis and proposal of specific mitigation measures for each stage of the pyrolysis process. The main results highlight the identification of key risks, such as exposure to high temperatures, presence of toxic chemicals and handling of flammable materials. Appropriate mitigation measures, as  the use of personal protection equipment, the occupational safety training of personnel, and the implementation of safe work procedures, can ensure a safe and healthy work environment. This study highlights the importance of prioritizing occupational safety in the waste tire pyrolysis industry. The promotion of a culture of safety and regulatory compliance at all stages of the pyrolysis process is recommended to ensure the long-term sustainability of this industry.

References

Abdulfattah, O., Alsurakji, I. H., El-Qanni, A., Samaaneh, M., Najjar, M., Abdallah, R., & Assaf, I. (2022). Experimental evaluation of using pyrolyzed carbon black derived from waste tires as additive towards sustainable concrete. Case Studies in Construction Materials, 16, e00938. https://doi.org/10.1016/j.cscm.2022.e00938

Babajo, S. A., Enaburekhan, J. S., & Rufai, I. A. (2019). Review on production of liquid fuel from co-pyrolysis of biomass with scrap/waste tire. Journal of Applied Sciences and Environmental Management, 23(8), Article 8. https://doi.org/10.4314/jasem.v23i8.10

Barabad, M. L. M., Jung, W., Versoza, M. E., Lee, Y., Choi, K., & Park, D. (2018). Characteristics of Particulate Matter and Volatile Organic Compound Emissions from the Combustion of Waste Vinyl. International Journal of Environmental Research and Public Health, 15(7), Article 7. https://doi.org/10.3390/ijerph15071390

Bhatnagar, A., Hogland, W., Marques, M., & Sillanpää, M. (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219, 499-511. https://doi.org/10.1016/j.cej.2012.12.038

Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y. F., Pereira, G., Ding, A., Huang, X., & Dumka, U. C. (2017). A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of The Total Environment, 579, 1000-1034. https://doi.org/10.1016/j.scitotenv.2016.11.025

Chew, K. W., Chia, S. R., Chia, W. Y., Cheah, W. Y., Munawaroh, H. S. H., & Ong, W.-J. (2021). Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Environmental Pollution, 278, 116836. https://doi.org/10.1016/j.envpol.2021.116836

Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171-197. https://doi.org/10.1016/j.tsep.2017.06.003

dos Santos, R. G., Rocha, C. L., Felipe, F. L. S., Cezario, F. T., Correia, P. J., & Rezaei-Gomari, S. (2020). Tire waste management: An overview from chemical compounding to the pyrolysis-derived fuels. Journal of Material Cycles and Waste Management, 22(3), 628-641. https://doi.org/10.1007/s10163-020-00986-8

Gamboa, A. R., Rocha, A. M. A., dos Santos, L. R., & de Carvalho, J. A. (2020). Tire pyrolysis oil in Brazil: Potential production and quality of fuel. Renewable and Sustainable Energy Reviews, 120, 109614. https://doi.org/10.1016/j.rser.2019.109614

He, Z., Li, G., Chen, J., Huang, Y., An, T., & Zhang, C. (2015). Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. Environment International, 77, 85-94. https://doi.org/10.1016/j.envint.2015.01.004

Hoang, A. T., Nguyen, T. H., & Nguyen, H. P. (2020). Scrap tire pyrolysis as a potential strategy for waste management pathway: A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-18. https://doi.org/10.1080/15567036.2020.1745336

Jayawardhana, Y., Gunatilake, S. R., Mahatantila, K., Ginige, M. P., & Vithanage, M. (2019). Sorptive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous municipal solid waste management and remediation of volatile organic compounds. Journal of Environmental Management, 238, 323-330. https://doi.org/10.1016/j.jenvman.2019.02.097

Jjagwe, J., Olupot, P. W., Menya, E., & Kalibbala, H. M. (2021). Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. Journal of Bioresources and Bioproducts, 6(4), 292-322. https://doi.org/10.1016/j.jobab.2021.03.003

Ławińska, O., Korombel, A., & Zajemska, M. (2022). Pyrolysis-Based Municipal Solid Waste Management in Poland-SWOT Analysis. Energies, 15(2), Article 2. https://doi.org/10.3390/en15020510

Mavukwana, A., & Sempuga, C. (2022). Recent developments in waste tyre pyrolysis and gasification processes. Chemical Engineering Communications, 209(4), 485-511. https://doi.org/10.1080/00986445.2020.1864624

Nasir Uddin, Md., Daud, W. M. A. W., & Abbas, H. F. (2013). Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables. Renewable and Sustainable Energy Reviews, 27, 204-224. https://doi.org/10.1016/j.rser.2013.06.031

Pan, X., Lian, W., Yang, J., Wang, J., Zhang, Z., Hao, X., Abudula, A., & Guan, G. (2022). Downer reactor simulation and its application on coal pyrolysis: A review. Carbon Resources Conversion, 5(1), 35-51. https://doi.org/10.1016/j.crcon.2021.12.003

Ravindra, K., Singh, T., & Mor, S. (2019). Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. Journal of Cleaner Production, 208, 261-273. https://doi.org/10.1016/j.jclepro.2018.10.031

Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P. M., Alvim-Ferraz, M. C. M., & Dias, J. M. (2011). Activated carbon modifications to enhance its water treatment applications. An overview. Journal of Hazardous Materials, 187(1), 1-23. https://doi.org/10.1016/j.jhazmat.2011.01.033

Rozzi, E., Minuto, F. D., Lanzini, A., & Leone, P. (2020). Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. Energies, 13(2), Article 2. https://doi.org/10.3390/en13020420

Sahoo, K., Kumar, A., & Chakraborty, J. P. (2021). A comparative study on valuable products: Bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues. Journal of Material Cycles and Waste Management, 23(1), 186-204. https://doi.org/10.1007/s10163-020-01114-2

Sharma, A., Khatri, D., Goyal, R., Agrawal, A., Mishra, V., & Hansdah, D. (2021). Environmentally Friendly Fuel Obtained from Pyrolysis of Waste Tyres. En D. Tripathi & R. K. Sharma (Eds.), Energy Systems and Nanotechnology (pp. 185-204). Springer. https://doi.org/10.1007/978-981-16-1256-5_11

Toteva, V., & Stanulov, K. (2020). Waste tires pyrolysis oil as a source of energy: Methods for refining. Progress in Rubber, Plastics and Recycling Technology, 36(2), 143-158. https://doi.org/10.1177/1477760619895026

Xia, W., Niu, C., & Ren, C. (2017). Enhancement in floatability of sub-bituminous coal by low-temperature pyrolysis and its potential application in coal cleaning. Journal of Cleaner Production, 168, 1032-1038. https://doi.org/10.1016/j.jclepro.2017.09.119

Yaqoob, H., Teoh, Y. H., Jamil, M. A., & Gulzar, M. (2021). Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review. Journal of the Energy Institute, 96, 205-221. https://doi.org/10.1016/j.joei.2021.03.002

Yaqoob, H., Teoh, Y. H., Sher, F., Jamil, M. A., Murtaza, D., Al Qubeissi, M., UI Hassan, M., & Mujtaba, M. A. (2021). Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries. Sustainability, 13(6), Article 6. https://doi.org/10.3390/su13063214

Zhang, C., Zeng, G., Huang, D., Lai, C., Chen, M., Cheng, M., Tang, W., Tang, L., Dong, H., Huang, B., Tan, X., & Wang, R. (2019). Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chemical Engineering Journal, 373, 902-922. https://doi.org/10.1016/j.cej.2019.05.139

Published

2024-07-23

How to Cite

Llumiquinga, J., & Pichoasamin, D. (2024). Occupational safety in alternative fuel production by pyrolysis of recycled tires: innovative techniques. CONECTIVIDAD, 5(3), 107–121. https://doi.org/10.37431/conectividad.v5i3.141

Issue

Section

Research Articles