Data-driven Model-free Hosting Capacity Estimation in a Low Voltage Prosumer

Authors

DOI:

https://doi.org/10.37431/conectividad.v5i3.134

Keywords:

Hosting Capacity, Data-driven analyses, Linear regression model, Distributed energy resource

Abstract

Currently, distributed generation systems have been proposed as a way to increase the energy potential of the countries introducing them, however, the entry of this new form of energy generation can cause some negative effects on the correct operation of the distribution network, one of these negative effects are the overvoltages that can exceed the levels allowed by the local operator. For this reason, it is necessary to limit in some way the injection of distributed generation into the grid. This parameter has been called Hosting Capacity, which is a new parameter developed to limit the power coming from distributed sources while maintaining the proper functioning of the grid. Many studies have been developed to define and calculate the Hosting Capacity, mainly based on scenario simulations, however, these need detailed and accurate network models which at low voltage levels is very difficult to have. The present work focuses on determining a Hosting Capacity value in a node at low voltage using values taken from a smart meter, the methodology uses a regression model considering voltage and power consumption values at the point. The results show a good approximation of Hosting Capacity validated through a network model of the connection node obtaining voltage values close to the limit, but lower than it, which allows the conclusion that the planted methodology is useful for the calculation of Hosting Capacity without the need for having a network model.

References

Bassi, V., Jaglal, D., Ochoa, L., Alpcan, T., & Leckie, C. (2022a). Deliverable 0 «Concept, Smart Meter Data, and Initial Findings». https://doi.org/10.13140/RG.2.2.29492.94089/1

Bassi, V., Jaglal, D., Ochoa, L., Alpcan, T., & Leckie, C. (2022b). Deliverable 0 «Concept, Smart Meter Data, and Initial Findings».

Bassi, V., Ochoa, L., & Alpcan, T. (2021a). Model-Free Voltage Calculations for PV-Rich LV Networks: Smart Meter Data and Deep Neural Networks. https://doi.org/10.1109/PowerTech46648.2021.9494847

Bassi, V., Ochoa, L., & Alpcan, T. (2021b). Model-Free Voltage Calculations for PV-Rich LV Networks: Smart Meter Data and Deep Neural Networks. 2021 IEEE Madrid PowerTech, 1-6. https://doi.org/10.1109/PowerTech46648.2021.9494847

Castelo de Oliveira, T. E., Ribeiro, P. F., Zobaa, A. F., Abdel Aleem, S. H. E., & Ismael, S. M. (2020). An Overview of Hosting Capacity for Modern Power Grids. En A. F. Zobaa, S. H. E. Abdel Aleem, S. M. Ismael, & P. F. Ribeiro (Eds.), Hosting Capacity for Smart Power Grids (pp. 1-9). Springer International Publishing. https://doi.org/10.1007/978-3-030-40029-3_1

Cunha, V. C., Freitas, W., Trindade, F. C. L., & Santoso, S. (2020). Automated Determination of Topology and Line Parameters in Low Voltage Systems Using Smart Meters Measurements. IEEE Transactions on Smart Grid, 11(6), 5028-5038. https://doi.org/10.1109/TSG.2020.3004096

e Silva, L. E. S., & Vieira, J. P. A. (2022). Combined PV-PEV Hosting Capacity Analysis in Low-Voltage Distribution Networks. Electric Power Systems Research, 206, 107829. https://doi.org/10.1016/j.epsr.2022.107829

Esau, Z., Ryoichi, H., & Hiroyuki, K. (2023). A flexible stochastic PV hosting capacity framework considering network over-voltage tolerance. Energy Reports, 9, 529-538. https://doi.org/10.1016/j.egyr.2022.11.101

Fatima, S., Püvi, V., & Lehtonen, M. (2020). Review on the PV Hosting Capacity in Distribution Networks. Energies, 13(18), Article 18. https://doi.org/10.3390/en13184756

Guo, Y., Yuan, Y., & Wang, Z. (2022). Distribution Grid Modeling Using Smart Meter Data. IEEE Transactions on Power Systems, 37(3), 1995-2004. https://doi.org/10.1109/TPWRS.2021.3118004

Huo, Y., Li, P., Ji, H., Yu, H., Yan, J., Wu, J., & Wang, C. (2023). Data-Driven Coordinated Voltage Control Method of Distribution Networks With High DG Penetration. IEEE Transactions on Power Systems, 38(2), 1543-1557. https://doi.org/10.1109/TPWRS.2022.3172667

Ismael, S. M., Abdel Aleem, S. H. E., Abdelaziz, A. Y., & Zobaa, A. F. (2019). State-of-the-art of hosting capacity in modern power systems with distributed generation. Renewable Energy, 130, 1002-1020. https://doi.org/10.1016/j.renene.2018.07.008

Munikoti, S., Abujubbeh, M., Jhala, K., & Natarajan, B. (2022). A novel framework for hosting capacity analysis with spatio-temporal probabilistic voltage sensitivity analysis. International Journal of Electrical Power & Energy Systems, 134, 107426. https://doi.org/10.1016/j.ijepes.2021.107426

Procopiou, A., Liu, M., Ochoa, L., Langstaff, T., & Harding, J. (2020). Smart meter-driven estimation of PV hosting capacity. https://doi.org/10.1049/oap-cired.2021.0287

Procopiou, A. T., Liu, M. Z., Ochoa, L. F., Langstaff, T., & Harding, J. (2020). Smart meter-driven estimation of PV hosting capacity. CIRED 2020 Berlin Workshop (CIRED 2020), 2020, 128-131. https://doi.org/10.1049/oap-cired.2021.0287

Qamar, N., Arshad, A., Mahmoud, K., & Lehtonen, M. (2023a). Hosting Capacity in Distribution Grids: A Review of Definitions, Performance Indices, Determination Methodologies, and Enhancement Techniques. Energy Science & Engineering, 11. https://doi.org/10.1002/ese3.1389

Qamar, N., Arshad, A., Mahmoud, K., & Lehtonen, M. (2023b). Hosting capacity in distribution grids: A review of definitions, performance indices, determination methodologies, and enhancement techniques. Energy Science & Engineering, 11(4), 1536-1559. https://doi.org/10.1002/ese3.1389

Rajabi, A., Elphick, S., David, J., Pors, A., & Robinson, D. (2022). Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective. Renewable and Sustainable Energy Reviews, 161, 112365. https://doi.org/10.1016/j.rser.2022.112365

Taheri, S., Jalali, M., Kekatos, V., & Tong, L. (2021). Fast Probabilistic Hosting Capacity Analysis for Active Distribution Systems. IEEE Transactions on Smart Grid, 12(3), 2000-2012. https://doi.org/10.1109/TSG.2020.3038651

Wu, J., Yuan, J., Weng, Y., & Ayyanar, R. (2023). Spatial-Temporal Deep Learning for Hosting Capacity Analysis in Distribution Grids. IEEE Transactions on Smart Grid, 14(1), 354-364. https://doi.org/10.1109/TSG.2022.3196943

Published

2024-07-23

How to Cite

Andagoya Alba, L. D., Jara, J., Catota, P., & Valencia, R. (2024). Data-driven Model-free Hosting Capacity Estimation in a Low Voltage Prosumer. CONECTIVIDAD, 5(3), 17–29. https://doi.org/10.37431/conectividad.v5i3.134

Issue

Section

Research Articles