Forecasting with Python, case study: visits to social networks in Ecuador with machine learning
DOI:
https://doi.org/10.37431/conectividad.v5i2.126Keywords:
ARIMA, Backtesting, Social networks, Machine learningAbstract
This article emphasizes the importance of respect in the use of social networks in Ecuadorian society, highlighting their diversity and the need to foster constructive dialogue rather than harmful online confrontation. A methodology employing machine learning techniques and statistical modeling, such as the ARIMA model, is provided to predict web traffic on social networks in Ecuador. In addition, various backtesting strategies are discussed to evaluate and improve the accuracy of the model over time. The results indicate significant growth in the number of social network users in Ecuador, with a focus on the ARIMA model as effective for time series prediction, although exploration of additional approaches and continued improvements are suggested in future research. This study contributes to a better understanding of the impact of social networks in Ecuadorian society and provides a methodological basis for forecasting web traffic on these platforms in the future.
References
Acevedo-Argüello, C., Zabala-Vargas, S., Rojas-Mesa, J., & Guayán-Perdomo, O. (2020). Análisis de Redes Sociales como estrategia para estudiar los Sistemas de Innovación. Revisión sistemática de la literatura. Revista Interamericana de Investigación Educación y Pedagogía RIIEP, 13(2), 370-402. https://doi.org/10.15332/25005421.6238
Ashok, K., Rajalakshmi, B., Chaitanya Reddy, K. S., Priyanka Guggulla, G., & Santhosh Krishna, B. V. (2023). A Novel Women Safety Analyis and Monitoring Sysetm over Social Media using Machine Learning. 2023 3rd International Conference on Intelligent Technologies, CONIT 2023, 1-5. https://doi.org/10.1109/CONIT59222.2023.10205753
Figuereo-Benítez, J. C., González-Quiñones, F., & Machin-Mastromatteo, J. D. (2021). Instagram como objeto de estudio en investigaciones recientes. Una revisión de literatura con enfoque en revistas científicas. Ámbitos. Revista Internacional de Comunicación, 53(53), 9-23. https://doi.org/10.12795/ambitos.2021.i53.01
Giuntini, F. T., De Moraes, K. L., Cazzolato, M. T., De Fatima Kirchner, L., De Jesus D. Dos Reis, M., Traina, A. J. M., Campbell, A. T., & Ueyama, J. (2021). Modeling and Assessing the Temporal Behavior of Emotional and Depressive User Interactions on Social Networks. IEEE Access, 9, 93182-93194. https://doi.org/10.1109/ACCESS.2021.3091801
Informe Estado Digital Ecuador 2023 - Mentinno - Acompañamiento directivo y analítica para negocios. (2023, 29 junio). Mentinno - Acompañamiento directivo y analítica para negocios. https://www.mentinno.com/informe-estado-digital-ecuador-2023/
Luo, T., Cao, Z., Zeng, D., & Zhang, Q. (2022). A Dissemination Model Based on Psychological Theories in Complex Social Networks. IEEE Transactions on Cognitive and Developmental Systems, 14(2), 519-531. https://doi.org/10.1109/TCDS.2021.3052824
Lupano Perugini, M. L., & Castro Solano, A. (2023). Uso pasivo de redes sociales y malestar psicológico. El rol de la comparación social. Interdisciplinaria. Revista de Psicología y Ciencias Afines, 40(2), 543-558. https://doi.org/10.16888/interd.2023.40.2.31
Maqsood, U., Khuhawar, F. Y., Talpur, S., Jaskani, F. H., & Memon, A. A. (2022). Twitter Mining based Forecasting of Cryptocurrency using Sentimental Analysis of Tweets. 2022 Global Conference on Wireless and Optical Technologies, GCWOT 2022, 1-6. https://doi.org/10.1109/GCWOT53057.2022.9772923
Nguyen, L., Yang, Z., Li, J., Pan, Z., Cao, G., & Jin, F. (2022). Forecasting People's Needs in Hurricane Events from Social Network. IEEE Transactions on Big Data, 8(1), 229-240. https://doi.org/10.1109/TBDATA.2019.2941887
Prakhar, K., Sountharrajan, S., Suganya, E., Karthiga, M., & Sathis Kumar, B. (2022). Effective Stock Price Prediction using Time Series Forecasting. 2022 6th International Conference on Trends in Electronics and Informatics, ICOEI 2022 - Proceedings, Icoei, 1636-1640. https://doi.org/10.1109/ICOEI53556.2022.9776830
Sampedro Guamán, C. R., Palma Rivera, D. P., Machuca Vivar, S. A., & Arrobo Lapo, E. V. (2021). Digital transformation of marketing in small and medium companies through social networks. Universidad y Sociedad, 13(3), 484-490.
Shen, C. Y., Yang, D. N., Lee, W. C., & Chen, M. S. (2022). Activity Organization for Friend-Making Optimization in Online Social Networks. IEEE Transactions on Knowledge and Data Engineering, 34(1), 122-137. https://doi.org/10.1109/TKDE.2020.2980516
Tejedor, S., Cervi, L., Martínez, F., & Tusa, F. (2021). Principales motivaciones en el uso de redes sociales en estudiantes de Comunicación: perspectiva comparada entre Colombia, Ecuador y España. Journal of Iberian and Latin American Research, 27(1), 163-182. https://doi.org/10.1080/13260219.2021.1947353
Wei, X., Xu, G., Wang, H., He, Y., Han, Z., & Wang, W. (2020). Sensing Users' Emotional Intelligence in Social Networks. IEEE Transactions on Computational Social Systems, 7(1), 103-112. https://doi.org/10.1109/TCSS.2019.2944687
Yuliansyah, H., Othman, Z. A., & Bakar, A. A. (2020). Taxonomy of link prediction for social network analysis: A review. IEEE Access, 8(1), 183470-183487. https://doi.org/10.1109/ACCESS.2020.3029122
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Instituto Superior Tecnológico Universitario Rumiñahui

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The originals published in the electronic edition under the first publication rights of the journal belong to the Instituto Superior Tecnológico Universitario Rumiñahui; therefore, it is necessary to cite the source in any partial or total reproduction. All the contents of the electronic journal are distributed under a Creative Commons Attribution-Noncommercial 4.0 International (CC-BY-NC 4.0) license.