Seguridad ocupacional en producción de combustible alternativo mediante pirólisis de neumáticos reciclados: técnicas innovadoras

Autores/as

DOI:

https://doi.org/10.37431/conectividad.v5i3.141

Palabras clave:

Gestión de residuos, Seguridad ocupacional, Piróilsis, Combustible alternativo, Sostenibilidad

Resumen

La pirólisis de neumáticos usados ha surgido como una opción prometedora ante la creciente necesidad de encontrar soluciones sostenibles para la gestión de residuos. El objetivo principal de este estudio fue analizar la seguridad ocupacional de la producción de combustible alternativo mediante la pirólisis de neumáticos usados en una planta piloto en la parroquia Sangolquí – Ecuador, con el fin de contribuir al desarrollo de prácticas sostenibles en la gestión de residuos. La metodología incluyó una revisión de literatura, realización de análisis de riesgos y la propuesta de medidas de mitigación específicas para cada etapa del proceso de pirólisis. Los principales resultados destacan la identificación de riesgos clave, como la exposición a altas temperaturas, presencia de productos químicos tóxicos y el manejo de materiales inflamables. Mediante las medidas de mitigación adecuadas, como el uso de equipos de protección personal, capacitación del personal en seguridad ocupacional y la implementación de procedimientos de trabajo seguro, se puede garantizar un entorno laboral seguro y saludable. Este estudio subraya la importancia de priorizar la seguridad ocupacional en la industria de la pirólisis de neumáticos usados. Se recomienda la promoción de una cultura de seguridad y cumplimiento normativo en todas las etapas del proceso de pirólisis para garantizar la sostenibilidad a largo plazo de esta industria.

Citas

Abdulfattah, O., Alsurakji, I. H., El-Qanni, A., Samaaneh, M., Najjar, M., Abdallah, R., & Assaf, I. (2022). Experimental evaluation of using pyrolyzed carbon black derived from waste tires as additive towards sustainable concrete. Case Studies in Construction Materials, 16, e00938. https://doi.org/10.1016/j.cscm.2022.e00938

Babajo, S. A., Enaburekhan, J. S., & Rufai, I. A. (2019). Review on production of liquid fuel from co-pyrolysis of biomass with scrap/waste tire. Journal of Applied Sciences and Environmental Management, 23(8), Article 8. https://doi.org/10.4314/jasem.v23i8.10

Barabad, M. L. M., Jung, W., Versoza, M. E., Lee, Y., Choi, K., & Park, D. (2018). Characteristics of Particulate Matter and Volatile Organic Compound Emissions from the Combustion of Waste Vinyl. International Journal of Environmental Research and Public Health, 15(7), Article 7. https://doi.org/10.3390/ijerph15071390

Bhatnagar, A., Hogland, W., Marques, M., & Sillanpää, M. (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219, 499-511. https://doi.org/10.1016/j.cej.2012.12.038

Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y. F., Pereira, G., Ding, A., Huang, X., & Dumka, U. C. (2017). A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of The Total Environment, 579, 1000-1034. https://doi.org/10.1016/j.scitotenv.2016.11.025

Chew, K. W., Chia, S. R., Chia, W. Y., Cheah, W. Y., Munawaroh, H. S. H., & Ong, W.-J. (2021). Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Environmental Pollution, 278, 116836. https://doi.org/10.1016/j.envpol.2021.116836

Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171-197. https://doi.org/10.1016/j.tsep.2017.06.003

dos Santos, R. G., Rocha, C. L., Felipe, F. L. S., Cezario, F. T., Correia, P. J., & Rezaei-Gomari, S. (2020). Tire waste management: An overview from chemical compounding to the pyrolysis-derived fuels. Journal of Material Cycles and Waste Management, 22(3), 628-641. https://doi.org/10.1007/s10163-020-00986-8

Gamboa, A. R., Rocha, A. M. A., dos Santos, L. R., & de Carvalho, J. A. (2020). Tire pyrolysis oil in Brazil: Potential production and quality of fuel. Renewable and Sustainable Energy Reviews, 120, 109614. https://doi.org/10.1016/j.rser.2019.109614

He, Z., Li, G., Chen, J., Huang, Y., An, T., & Zhang, C. (2015). Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. Environment International, 77, 85-94. https://doi.org/10.1016/j.envint.2015.01.004

Hoang, A. T., Nguyen, T. H., & Nguyen, H. P. (2020). Scrap tire pyrolysis as a potential strategy for waste management pathway: A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-18. https://doi.org/10.1080/15567036.2020.1745336

Jayawardhana, Y., Gunatilake, S. R., Mahatantila, K., Ginige, M. P., & Vithanage, M. (2019). Sorptive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous municipal solid waste management and remediation of volatile organic compounds. Journal of Environmental Management, 238, 323-330. https://doi.org/10.1016/j.jenvman.2019.02.097

Jjagwe, J., Olupot, P. W., Menya, E., & Kalibbala, H. M. (2021). Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. Journal of Bioresources and Bioproducts, 6(4), 292-322. https://doi.org/10.1016/j.jobab.2021.03.003

Ławińska, O., Korombel, A., & Zajemska, M. (2022). Pyrolysis-Based Municipal Solid Waste Management in Poland-SWOT Analysis. Energies, 15(2), Article 2. https://doi.org/10.3390/en15020510

Mavukwana, A., & Sempuga, C. (2022). Recent developments in waste tyre pyrolysis and gasification processes. Chemical Engineering Communications, 209(4), 485-511. https://doi.org/10.1080/00986445.2020.1864624

Nasir Uddin, Md., Daud, W. M. A. W., & Abbas, H. F. (2013). Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables. Renewable and Sustainable Energy Reviews, 27, 204-224. https://doi.org/10.1016/j.rser.2013.06.031

Pan, X., Lian, W., Yang, J., Wang, J., Zhang, Z., Hao, X., Abudula, A., & Guan, G. (2022). Downer reactor simulation and its application on coal pyrolysis: A review. Carbon Resources Conversion, 5(1), 35-51. https://doi.org/10.1016/j.crcon.2021.12.003

Ravindra, K., Singh, T., & Mor, S. (2019). Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. Journal of Cleaner Production, 208, 261-273. https://doi.org/10.1016/j.jclepro.2018.10.031

Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P. M., Alvim-Ferraz, M. C. M., & Dias, J. M. (2011). Activated carbon modifications to enhance its water treatment applications. An overview. Journal of Hazardous Materials, 187(1), 1-23. https://doi.org/10.1016/j.jhazmat.2011.01.033

Rozzi, E., Minuto, F. D., Lanzini, A., & Leone, P. (2020). Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. Energies, 13(2), Article 2. https://doi.org/10.3390/en13020420

Sahoo, K., Kumar, A., & Chakraborty, J. P. (2021). A comparative study on valuable products: Bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues. Journal of Material Cycles and Waste Management, 23(1), 186-204. https://doi.org/10.1007/s10163-020-01114-2

Sharma, A., Khatri, D., Goyal, R., Agrawal, A., Mishra, V., & Hansdah, D. (2021). Environmentally Friendly Fuel Obtained from Pyrolysis of Waste Tyres. En D. Tripathi & R. K. Sharma (Eds.), Energy Systems and Nanotechnology (pp. 185-204). Springer. https://doi.org/10.1007/978-981-16-1256-5_11

Toteva, V., & Stanulov, K. (2020). Waste tires pyrolysis oil as a source of energy: Methods for refining. Progress in Rubber, Plastics and Recycling Technology, 36(2), 143-158. https://doi.org/10.1177/1477760619895026

Xia, W., Niu, C., & Ren, C. (2017). Enhancement in floatability of sub-bituminous coal by low-temperature pyrolysis and its potential application in coal cleaning. Journal of Cleaner Production, 168, 1032-1038. https://doi.org/10.1016/j.jclepro.2017.09.119

Yaqoob, H., Teoh, Y. H., Jamil, M. A., & Gulzar, M. (2021). Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review. Journal of the Energy Institute, 96, 205-221. https://doi.org/10.1016/j.joei.2021.03.002

Yaqoob, H., Teoh, Y. H., Sher, F., Jamil, M. A., Murtaza, D., Al Qubeissi, M., UI Hassan, M., & Mujtaba, M. A. (2021). Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries. Sustainability, 13(6), Article 6. https://doi.org/10.3390/su13063214

Zhang, C., Zeng, G., Huang, D., Lai, C., Chen, M., Cheng, M., Tang, W., Tang, L., Dong, H., Huang, B., Tan, X., & Wang, R. (2019). Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chemical Engineering Journal, 373, 902-922. https://doi.org/10.1016/j.cej.2019.05.139

Descargas

Publicado

2024-07-23

Cómo citar

Llumiquinga, J., & Pichoasamin, D. (2024). Seguridad ocupacional en producción de combustible alternativo mediante pirólisis de neumáticos reciclados: técnicas innovadoras. CONECTIVIDAD, 5(3), 107–121. https://doi.org/10.37431/conectividad.v5i3.141

Número

Sección

Artículos Científicos